Multiscale hydro-thermo-mechanical model for early-age and mature concrete structures

نویسندگان

  • Libor Jendele
  • Vít Smilauer
  • Jan Cervenka
چکیده

Temperature and early-age mechanical properties in hydrating concrete structures present a significant risk for cracking, having a major impact on concrete durability. In order to tackle these phenomena, a multiscale analysis is formulated. It accounts for a high variety of cement properties, concrete composition, structure geometry and boundary conditions. The analysis consists of two steps. The first step focuses on the evolution of moisture and temperature fields. An affinity hydration model accompanied with non-stationary heat and moisture balance equations are employed. The second step contains quasi-static creep, plasticity and damage models. It imports the previously calculated moisture and temperature fields into the mechanical problem in the form of a staggered solution. The whole model has been implemented in the ATENA software, including also the effect of earlyage creep, autogenous and drying shrinkage. Validation on selected structures shows a good prediction of temperature fields during concrete hardening and a reasonable performance of the mechanical part. 2013 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area

Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

Effect of Seawater on Micro-Nano Air Bubbles Concrete for Repair of Coastal Structures

This paper investigated the effects of seawater curing of concrete made by Micro-Nano Air Bubbles (MNAB) on compressive, flexural and tensile strengths of the concrete. This product will be applicable for rehabilitation or repair of coastal RC structures. In this research, the effect of different combinations of concrete ingredients including 0-100, 25-75, 50-50, 75-25, and 100-0 percent ...

متن کامل

A FEM Multiscale Homogenization Procedure using Nanoindentation for High Performance Concrete

This paper aims to develop a numerical multiscale homogenization method for prediction of elasto-viscoplastic properties of a high performance concrete (HPC). The homogenization procedure is separated into two-levels according to the microstructure of the HPC: the mortar or matrix level and the concrete level. The elasto-viscoplastic behavior of individual microstructural phases of the matrix a...

متن کامل

Modeling Framework for Fracture in Multiscale Cement-Based Material Structures

Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Advances in Engineering Software

دوره 72  شماره 

صفحات  -

تاریخ انتشار 2014